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We propose a mechanism by which the degree of chaoticity as measured by the average Lyapunov exponent
in chaotic flows can be increased. Our mechanism consists of introducing small changes in the system param-
eters in regions of phase space where the local Lyapunov exponent falls substantially below its average value.
We have applied our mechanism to several typical chaotic flows and maps, dissipative as well as area pre-
serving. An interesting consequence of this increase in chaoticity is an enhancement of the rate of mixing of the
system. We find that our method is quite efficient as it gives a substantial enhancement of chaos as measured
by the average Lyapunov exponent and also the rate of mixing for small changes in system parameters.
@S1063-651X~96!01510-3#

PACS number~s!: 05.45.1b

I. INTRODUCTION

Most studies which attempt to control chaotic dynamical
systems direct their efforts towards controlling the system to
regular periodic orbits or to specific chaotic orbits@1,2#.
However, there have been few attempts at control directed
towards enhancing the chaoticity of chaotic flows. This is an
important problem for its own intrinsic interest and may have
practical applications as well. An important example of a
situation where enhancing chaos is useful, is the process of
mixing @3–5#. Mixing is a consequence of the stretching and
folding of chaotic flows. A system which has exponential
stretching, as in a chaotic flow, can mix efficiently. Many
mixing processes like fluid flows, combustion processes,
chemical reactions, heat transfer processes, etc., can be mod-
eled by chaotic flows@3#. An enhancement of the chaoticity
of such systems can lead to an enhancement of the rate of
mixing, an outcome which has desirable consequences in
many of these contexts. In addition to enhancing the rate of
mixing, the enhancement of chaos can be desirable and use-
ful in other situations also . In the case of biological systems,
there are several instances of situations where maintaining or
enhancing chaos is desirable@6#. It has been suggested that
the pathological destruction of chaotic behavior may be re-
sponsible for heart failure@7#, and some types of brain sei-
zures@8#. Techniques which are capable of enhancing and
maintaining chaos could be useful in such contexts@9#. We
propose a mechanism to enhance chaos in this paper.

An important parameter, which characterizes the degree
of chaos in a chaotic flow is the Lyapunov exponent, which
gives the average rate of stretching. However, the rate of
stretching is not uniform over a chaotic attractor in the case
of dissipative flows or over the phase space of a conservative
flow. Thus the local Lyapunov exponent~LLE!, a measure of
the local rate of stretching, is different in different regions of
the phase space@10#. We exploit the nonuniform nature of
the spatial distribution of the LLEs to construct a mechanism
that can enhance chaos and, hence, the rate of chaotic mix-
ing. Briefly, we enhance the average rate of stretching by
introducing a small parameter perturbation which enhances
the LLE whenever the system trajectory visits a region where
the LLEs take values much smaller than their average value.

We find that this procedure works quite efficiently as small
perturbations in parameter made for small times compared to
the total time of evolution can lead to substantial enhance-
ment of the Lyapunov exponent and to the rate of mixing.
Our examples are both dissipative and conservative in nature
and discuss mixing in phase space. However, our conserva-
tive examples are relevant to mixing in real space in the
same sense in which the Lagrangian description of a two-
dimensional fluid defined in physical space by the fluid ve-
locity field obtainable from a stream function can be mapped
on to a Hamiltonian flow in two-dimensional phase space
@11#.

II. THE MECHANISM

Let us consider an autonomous nonlinear dynamical sys-
tem x of dimensionn, evolving via the equations

ẋ5F~x,m!, ~1!

where the set of parametersm takes values such that the
trajectory shows chaotic behavior. Letw(x,t) be the tangent
vector to the trajectory at the pointx and timet. The evolu-
tion of w is given by

ẇ5~w–¹!F. ~2!

The Lyapunov exponent of the system is defined by

l5 lim
t→`

1

t
ln

uuw~x,t !uu
uuw~x~0!,0!uu

, ~3!

wherex(0) is the value ofx at t50 anduuwuu is the norm of
w. We now define the local Lyapunov exponentl(x) as

l~x!5 lim
Dt→0

1

Dt
ln

uuw@x~ t1Dt !,t1Dt#uu
uuw@x~ t !,t#uu

. ~4!

The quantityl(x) represents the local rate of stretching at
the pointx. This is, in general, not uniform over the attractor.
We also note that the Lyapunov exponentl @Eq. ~3!# is the
average value of the LLEs for a long orbit or can be obtained
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by averaging the LLEs over the invariant density of the at-
tractors of dissipative systems.

We set up a control procedure to enhance chaos and in-
sofar as this improves mixing, increase the mixing rate uti-
lizing the distribution of the LLEs. The control procedure
operates in regions where the LLEs fall substantially below
the average valuel. If, at any time, the LLE of the system
falls below its average value to the point where

l~x!,~l2gsl!, ~5!

wheresl is the standard deviation of the distribution of LLE
andg is some chosen factor, the control is activated so that
the parameterm is changed tom1sdm. Heredm is a small
increment ands takes values11 or21 depending on which
choice enhances the LLE. The system is allowed to evolve
with the new value of the parameter as long as the condition
~5! is satisfied. Thereafter the parameter is reset to its origi-
nal value.

To decide the signs, we write an equation forw in matrix
notation in the form

ẆT5WTMT, Ẇ5MW, ~6!

whereWT is a row vector and the matrixMT is given by
MT5¹F. The equation for the norm ofW can be written as

uuẆuu25WT~MT1M !W. ~7!

Thus the rate of change in the norm ofW due to change in
the parameter is given by

DuuẆuu25uuẆ~m1dm!uu22uuẆ~m!uu2

.WT~Mm
T1Mm!Wdm, ~8!

where the last step is obtained by expanding to lowest order
in dm and Mm5]M /]m. Clearly, for the local rate of

stretching to increaseDuuWuu2 must be positive . Thus the
sign s is determined to ensure thatDuuWuu2 is positive.

It must be noted that Eq.~8! is written in the lowest order
in dm. Actually, the effect of the perturbation is nonlinear
since when the parameter changes the entire trajectory of the
system changes. Hence, the effect on the LLE can be quite
different from that given by Eq.~8! due to the effect of the
higher nonlinear terms. In many cases the enhancement in
the Lyapunov exponent turns out to be substantially higher
than that expected in the linear approximation.

The procedure used above to enhance chaos and the mix-
ing rate can be easily modified to apply to the case of dis-
crete maps. For maps, the evolution equation@Eq. ~1!# can be
written as

xt115f~xt ,m!, ~9!

wherext are the dynamical variables at timet. The evolution
of the tangent vectorw is given by

wt115~wt•¹!f. ~10!

The control procedure is the same as above. The parameter
m is changed tom1sdm when condition~5! is satisfied. To
decide the signs we write Eq.~10! in matrix form as

Wt115MWt , ~11!

whereMT5¹f. The equation for the norm ofW is

uuWt11uu25Wt
TMTMWt . ~12!

Thus the rate of change in the norm ofW due to change in
the parameter is given by

FIG. 1. The plot of the Lyapunov exponent of the Lorenz attrac-
tor for the parameterss510.0,b52.6666, andr from r528.0 to
r580.0. The lower curve and upper curves correspond to the
Lyapunov exponent for the uncontrolled and controlled systems,
respectively withg50.5 anddr51.0.

FIG. 2. A histogram of the distribution of the LLEs of the un-
controlled and controlled Lorenz systems for the parameter values
s510.0, r530.0, b52.6666,g50.5, anddr51.0. The data has
been binned into ten boxes. The bar without lines shows the nor-
malized frequency of occurrence of the corresponding LLE of the
uncontrolled system and the bar with vertical lines shows the same
quantity for the controlled system.
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DuuWt11uu25uuWt11~m1dm!uu22uuWt11~m!uu2 ~13!

5Wt
T~MTMm1Mm

TM !Wtdm, ~14!

where the last step is obtained by expanding to lowest order
in dm andMm5]M /]m. For control to enhance chaos and
rate of mixing, the signs for the parameter changedm must
be such thatDuuWt11uu2 is positive. We shall illustrate our
procedure for both flows and maps in the next section.

III. ILLUSTRATIONS

A. Flows

We now illustrate our procedure using some typical flows.
We first consider the Lorenz system@12# given by

ẋ5s~y2x!, ẏ5rx2y2xz, ż5xy2bz. ~15!

We chooser as the control parameter. The perturbation is
switched on when the condition~5! is satisfied. The sign of
the perturbationdr is obtained using Eq.~8! and the sign is
decided by WxWydr.0. For a change of parameter
dr51.0,g50.5, and with parameterss510.0,r530.0, and
b58/3. The Lyapunov exponent of the system is enhanced
from l50.950 for the uncontrolled case tol51.440 ~See
Table I!.

This enhancement in the Lyapunov exponent is not con-
fined to the parameter values above. The plot of the
Lyapunov exponent of the system as a function ofr for both
the uncontrolled and the controlled case is shown in Fig. 1. It
is clear from the figure that there is a substantial enhance-
ment of the Lyapunov exponent over the entire range plotted
in the figure. It can also be seen that the control mechanism
has succeeded in producing a positive Lyapunov exponent in
a parameter regime where the uncontrolled system has a pe-
riodic window. Thus the technique has been successful in
both enhancing and maintaining chaos. This enhancement
has been effected by causing a change in the LLEs of the
system via parameter change. To show this, we plot the dis-
tribution of the LLE for r530.0 for both the uncontrolled
and the controlled cases in Fig. 2. It is clear that the distri-
bution of local Lyapunov exponents of the system has
changed in a manner in which the average exponent is sig-
nificantly enhanced.

In order to show that the increase in the Lyapunov expo-
nent leads to an enhancement of the rate of mixing, we op-
erated the control procedure on a large number of initial

conditions in a small region of phase space. We cover the
attractor with a grid of cubic boxes. We take a large number
of initial conditions in a randomly chosen box. Each initial
condition evolves with a distinct trajectory and the control is
operative for a given trajectory~corresponding to a given
initial condition! whenever the LLE of the trajectory satisfies
condition ~5!. The initial conditions are also evolved sepa-
rately without the control. The initial conditions initially in
one box spread over several boxes with time. A comparison
of the number of occupied boxes, i.e., the boxes which have
at least one initial condition, as a function of time for the
uncontrolled and the controlled systems gives us an idea of
the relative rates of mixing of the two systems. Figure 3 plots
the number of occupied boxes as a function of time for both
the uncontrolled and the controlled systems with a grid of
103 boxes and 105 initial conditions.The parameter values
ares510.0,r530.0,b52.6666,dr51.0, andg50.25@13#.
It is clear from the figure that the controlled system mixes at
a faster rate than the uncontrolled one. The results are un-
changed for any randomly chosen initial box. This demon-
strates that the control procedure has successfully enhanced
the rate of mixing of the system.

We have also applied our algorithm to the Williamowski-

TABLE I. We list the uncontrolled~free! and controlled~cont.! values of the Lyapunov exponent and of
the fractal dimensions~calculated by the box-counting algorithm! for several dissipative maps and flows. The
values of the parameters of the systems analyzed are listed in the text. The column Fract. refers to the fraction
of time for which the system is controlled anddm is the parameter change.

System g dm Fract. Lyapunov exp. Dimension

Free Cont. Free Cont.
Lorenz 0.5 dr51.0 0.344 0.951 1.440 2.052 2.056

0.25 dr51.0 0.447 0.951 1.362 2.052 2.061
Williamowski 1.0 dk151.5 0.047 0.559 0.804 2.069 2.068
-Rössler

Hénon 0.5 da50.1 0.263 0.306 0.328 1.206 1.212

FIG. 3. The plot of the number of occupied boxes as a function
of time for the uncontrolled~solid line! and controlled~dashed line!
Lorenz systems. The parameter values ares510.0, b52.666 66,
r530.0,g50.25, anddr51.0.
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Rössler attractor, which models a system of chemical reac-
tions @14,15#. The Williamowski-Rössler system evolves via
the system of equations

ẋ5k1x2k21x
22k2xy1k22y

22k4xz1k24 ,

ẏ5k2xy2k22y
22k3y1k23 ,

ż52k4xz1k241k5z2k25z
2. ~16!

The system is allowed to evolve at the parameter values
k1530.0, k251.0, k3510.0, k451.0, k5516.5, k2150.25,
k2251.031024, k2351.0310235k24, k2550.5. Control
is effected via a change in parameterk1 whenever the con-
dition ~5! is satisfied. As seen from Table I this results in a
large enhancement of the Lyapunov exponent from the un-
controlled valuel50.559 to the valuel50.804 after the
application of the control. We have also verified that the rate

FIG. 4. We show the spread of 10 000 points, initially in the same box of a 64364 grid on the phase space of the standard map.~a! and
~b! show the uncontrolled and controlled standard map after 10 iterates, and~c! and~d! show similar graphs after 30 iterates. The parameter
values areK51.5,dK50.1, andg50.25. The solid box seen in each figure is the set of initial conditions that are being iterated. The effect
of the control procedure on global mixing is demonstrated in~e! and~f! where uncontrolled and controlled points are, respectively, shown
after 200 iterates.
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of mixing is enhanced due to the control by evolving a large
number of initial conditions in a small region of phase space.

B. Maps

Consider the He´non map@16# given by

xt11512axt
21yt , yt115byt11 . ~17!

If our control procedure is applied to the He´non map at pa-
rameter valuesa51.2,b50.3 withda50.1 as the parameter
change, we again find an enhancement of the Lyapunov ex-
ponent from the uncontrolled valuel50.306 to the con-
trolled valuel50.328 ~see Table I!. Other values of the
parameters also give similar results.

All our examples so far have dealt with dissipative flows.
However, our procedure is completely general and can be
applied to conservative systems as well, provided the change
in parameter is made in a way in which the conservative
nature of the flow is preserved. We demonstrate the increase
in chaos and rate of mixing in the standard map@11#.

xt115xt1
K

2p
sin~2pyt!, yt115yt1xt11 . ~18!

The increase in the rate of spread of initial conditions in
phase space of the controlled standard map as compared to
the uncontrolled one is demonstrated in Fig. 4. The param-
eter values areK51.5, dK50.2, g50.25. It can be easily
seen that the controlled map retains its area-preserving prop-
erty. We iterate 10 000 initial conditions initially in a small
box. Figures 4~a! and 4~b! show the uncontrolled and con-
trolled systems, respectively, after ten iterations. Figs. 4~c!
and 4~d! show the corresponding figures after 30 iterations. It
is clear that the controlled system has spread out more than
the uncontrolled situations. Thus the rate of mixing is en-
hanced. The Lyapunov exponent for the orbit with the initial
condition x50.2, y50.3 increases froml50.286 to
l50.384. The invariant KAM tori in the phase space of the
standard map function as barriers to global mixing. To see
the effect of control on asymptotic global mixing we plot the
uncontrolled and controlled system after 200 iterates in Figs.
4~e! and 4~f!, respectively. We find that the attractor is very
similar in both the cases except that the controlled attractor
spreads more. The area of empty regions in the uncontrolled
situation@Fig. 4~e!# is larger than the area of empty regions
in the controlled situation@Fig. 4~f!#. We also plot the num-
ber of occupied boxes as a function of time for both the
controlled and uncontrolled standard maps in Fig. 5. It is
clear that the number of occupied boxes grows much faster
for the controlled system.

IV. DISCUSSION AND CONCLUSIONS

As demonstrated above, our control procedure works for
all the maps and flows tested and the Lyapunov exponent is
substantially enhanced in most cases. The Lyapunov expo-
nent referred to in the entire discussion above is the largest
Lyapunov exponent of the system. It is also interesting to
look at the other Lyapunov exponents of the system. For the
Lorenz attractor, for the parameter valuess510.0,
r530.0, b52.6666,dr51.0, andg50.5, the complete set

of Lyapunov exponents of the uncontrolled system is given
by ~0.950, 0.000,214.617), and that of the controlled sys-
tem is given by~1.440,20.420,214.686). Thus the largest
Lyapunov exponent of the system, which is a measure of the
rate of stretching, has increased whereas the other Lyapunov
exponents of the system, have become more negative signi-
fying an increase in the rate of contraction. The controlled
system no longer has a zero Lyapunov exponent as the tra-
jectory is no longer smooth. These observations are also true
of the other dissipative systems studied. The control proce-
dure tends to push the trajectory in the basin of attraction of
the uncontrolled attractor, but the increased rate of contrac-
tion pushes it back to the original attractor. Both these fac-
tors work to our advantage. As mentioned earlier, the in-
crease in the rate of stretching tends to mix the system better.
The increase in the rate of contraction has the advantage that
it tends to stabilize the attractor. This works best for dissipa-
tive systems and is the origin of the insignificant change in
the fractal dimension of the controlled and uncontrolled at-
tractors in these cases~see Table I!.

The control procedure outlined above leads to the en-
hancement of chaos and the rate of mixing for most param-
eter settings. However, we did find a few cases where it did
not work well, e.g., in the neighborhood of the parameter
valuesr5138.0 andr5160.0 for the Lorenz attractor, where
there is a wide periodic window nearby. In such cases the
control tends to push the trajectory in the neighborhood of a
periodic orbit resulting in intermittent behavior and can even
lead to a decrease in the Lyapunov exponent. This problem
can be easily taken care of by changing the magnitude of the
parameter change and/or the factorg.

Yet another problem can arise in the case of conservative
systems. As seen in the case of the standard map, our control
mechanism improves the rate of mixing in the ergodic re-
gions of the phase space, and the controlled system spreads
more in phase space than the uncontrolled one. However,
there still remain barriers to global mixing in the form of
invariant KAM curves in the phase space. It may be possible
to solve this problem in some cases by an appropriate choice

FIG. 5. The plot of the number of occupied boxes as a function
of time for the controlled~solid line! and uncontrolled~dashed line!
standard maps. The parameter values areK51.5, dK50.2. The
curves are obtained after averaging over 25 different initial boxes.
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of the factorg and the magnitude of the parameter change.
However, this may not always be possible.

Our control procedure works quite efficiently as it pro-
duces a substantial enhancement of the Lyapunov exponent
for quite small changes in the parameters. This is due to the
fact that our control procedure works by switching between
three types of chaotic flows, those characteristic of parameter
valuesm, m1dm andm2dm. This switching introduces an
extra time dependence in the problem and is the origin of the
efficiency of the procedure.

To summarize, we have introduced an efficient mecha-
nism that produces a substantial increase in the chaos and the

rate of mixing for small changes in parameters. This mecha-
nism enhances the degree of chaoticity of the system and
hence can be useful in contexts other than the mixing context
emphasized above. The success of the mechanism has been
demonstrated for several chaotic flows and maps. We hope
that this mechanism will prove to be useful in enhancing the
rate of mixing and also in other practical contexts.

ACKNOWLEDGMENTS

We thank the Department of Science and Technology~In-
dia! for financial assistance.

@1# E. Ott, C. Grebogi, and J. A. Yorke, Phys. Rev. Lett.64, 1196
~1990!.

@2# L. M. Pecora and T. L. Caroll, Phys. Rev. Lett.64, 821~1990!;
Phys. Rev. A44, 2374~1990!.

@3# J. M. Ottino,The Kinematics of Mixing, Stretching, Chaos and
Transport~Cambridge University Press, Cambridge, 1989!.

@4# Y. Wang, J. Singer, and H. H. Bau, J. Fluid Mechanics237,
479 ~1992!.

@5# J. M. Ottino, Sci. Am.260 ~1!, 40 ~1989!; J. M. Ottino, F. J.
Muzzio, M. Tjahjadi, J. G. Franjione, S. C. Jana, and H. A.
Kusch, Science253, 755 ~1995!; J. M. Ottino, G. Metcalfe,
and S. C. Jana, inProceedings of the Second Experimental
Chaos Conference~World Scientific, Singapore, 1995!, pp.
3–20.

@6# See, e.g., E. Ott and M. Spano, Phys. Today48 ~5!, 34 ~1995!,
and references therein.

@7# M. A. Woo, W. G. Stevenson, D. K. Moser, R. M. Harper, and
R. Trelease, Am. Heart J.123, 704 ~1992!; A. Goldberger,

Ann. Biomed. Eng.18, 195 ~1990!.
@8# S. J. Schiff, K. Jenger, D. H. Duong, T. Chang, M. L. Spano,

and W. L. Ditto, Nature370, 615 ~1994!.
@9# W. Yang, M. Ding, A. Mandell, and E. Ott, Phys. Rev. E51,

102 ~1995!.
@10# H. D. I. Abarbanel, R. Brown, J. J. Sidorowich, and L. Sh.

Tsimring, Rev. Mod. Phys.65, 1331~1993!.
@11# M. Tabor, Chaos and Integrability in Nonlinear Dynamical

Systems, An Introduction~Wiley, New York, 1989!.
@12# E. N. Lorenz, J. Atmos. Sci.20, 130 ~1963!.
@13# For g50.5 it is necessary to take a much larger number of

initial conditions to obtain a plot that is robust to change in
initial conditions.

@14# K. D. Williamowski and O. E. Ro¨ssler, Z. Naturfosch. Teil A
35, 317 ~1980!.

@15# B. L. Aguda and B. L. Clarke, J. Chem. Phys.89, 7428
~1988!.
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