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Enhancing chaos in chaotic maps and flows
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We propose a mechanism by which the degree of chaoticity as measured by the average Lyapunov exponent
in chaotic flows can be increased. Our mechanism consists of introducing small changes in the system param-
eters in regions of phase space where the local Lyapunov exponent falls substantially below its average value.
We have applied our mechanism to several typical chaotic flows and maps, dissipative as well as area pre-
serving. An interesting consequence of this increase in chaoticity is an enhancement of the rate of mixing of the
system. We find that our method is quite efficient as it gives a substantial enhancement of chaos as measured
by the average Lyapunov exponent and also the rate of mixing for small changes in system parameters.
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[. INTRODUCTION We find that this procedure works quite efficiently as small
perturbations in parameter made for small times compared to
Most studies which attempt to control chaotic dynamicalthe total time of evolution can lead to substantial enhance-
systems direct their efforts towards controlling the system tgnent of the Lyapunov exponent and to the rate of mixing.
regular periodic orbits or to specific chaotic orbfis,2]. Our examples are both dissipative and conservative in nature
However, there have been few attempts at control directe@nd discuss mixing in phase space. However, our conserva-
towards enhancing the chaoticity of chaotic flows. This is arfivé examples are relevant to mixing in real space in the
important problem for its own intrinsic interest and may havesame sense in which the Lagrangian description of a two-
practical applications as well. An important example of adimensional fluid defined in physical space by the fluid ve-
situation where enhancing chaos is useful, is the process #icity field obtainable from a stream function can be mapped
mixing [3—5]. Mixing is a consequence of the stretching andon to a Hamiltonian flow in two-dimensional phase space
folding of chaotic flows. A system which has exponential[11].
stretching, as in a chaotic flow, can mix efficiently. Many
mixing processes like fluid flows, combustion processes, Il. THE MECHANISM
chemical reactions, heat transfer processes, etc., can be mod-
eled by chaotic flow$3]. An enhancement of the chaoticity
of such systems can lead to an enhancement of the rate Hm
mixing, an outcome which has desirable consequences in k=F(x, ) )
many of these contexts. In addition to enhancing the rate of M

mi>§ing, the gnha_ncement of chaos can be_desirable and US§here the set of parametegs takes values such that the
ful in other situations also . In the case of biological SyStemStrajectory shows chaotic behavior. Lefx,t) be the tangent

there are several instances of situations where maintaining Of, .o t5 the trajectory at the poirtand timet. The evolu-
enhancing chaos is desiraljig]. It has been suggested that tion of w is given by '

the pathological destruction of chaotic behavior may be re-
sponsible for heart failurg7], and some types of brain sei- W= (w-V)F. )
zures[8]. Technigues which are capable of enhancing and
maintaining chaos could be useful in such cont¢@ls We  The Lyapunov exponent of the system is defined by
propose a mechanism to enhance chaos in this paper.

An important parameter, which characterizes the degree 1 [lw(x,1)]]
of chaos in a chaotic flow is the Lyapunov exponent, which A= |Im?|nm, (©)]
gives the average rate of stretching. However, the rate of t=ee '
stretching is not uniform over a chaotic attractor in the case . .
of dissipative flows or over the phase space of a conservatiVdherex(0) is the value ok att=0 and||wl| is the norm of
flow. Thus the local Lyapunov exponefilLE), a measure of - We now define the local Lyapunov exponex{k) as
the local rate of stretching, is different in different regions of
the phase spadd0]. We exploit the nonuniform nature of A(X)= lim imHW[X(HAt)’HAt]“_ %)
the spatial distribution of the LLEs to construct a mechanism at—0At [[wlx(t),t]]]
that can enhance chaos and, hence, the rate of chaotic mix-
ing. Briefly, we enhance the average rate of stretching byrhe quantityh(x) represents the local rate of stretching at
introducing a small parameter perturbation which enhancethe pointx. This is, in general, not uniform over the attractor.
the LLE whenever the system trajectory visits a region wheré&Ve also note that the Lyapunov expon@nfEq. (3)] is the
the LLEs take values much smaller than their average valueverage value of the LLEs for a long orbit or can be obtained

Let us consider an autonomous nonlinear dynamical sys-
x of dimensionn, evolving via the equations
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by averaging the LLEs over the invariant density of the at-stretching to increasd||W||?> must be positive . Thus the
tractors of dissipative systems. signs is determined to ensure thag|W||? is positive.

We set up a control procedure to enhance chaos and in- It must be noted that Eq8) is written in the lowest order
sofar as this improves mixing, increase the mixing rate utiin du. Actually, the effect of the perturbation is nonlinear
lizing the distribution of the LLEs. The control procedure since when the parameter changes the entire trajectory of the
operates in regions where the LLESs fall substantially belowsystem changes. Hence, the effect on the LLE can be quite
the average valug. If, at any time, the LLE of the system different from that given by Eq@8) due to the effect of the

falls below its average value to the point where higher nonlinear terms. In many cases the enhancement in
the Lyapunov exponent turns out to be substantially higher
AX)<(N=1yay), (5 than that expected in the linear approximation.

_ o S The procedure used above to enhance chaos and the mix-
whereo, is the standard deviation of the distribution of LLE jng rate can be easily modified to apply to the case of dis-
and y is some chosen factor, the control is activated so thagrete maps. For maps, the evolution equaf®a. (1)] can be
the parametey is changed tqu+sdw. Heredu is a small  ritten as
increment and takes values-1 or —1 depending on which
choice enhances the LLE. The system is allowed to evolve Xes 1= F(X ) )

. . t+1 t1 M),
with the new value of the parameter as long as the condition
gl '3;S;'Sf'ed' Thereafter the parameter is reset to its Orlgl\'/vherext are the dynamical variables at tiheThe evolution
To decide the sigs, we write an equation fow in matrix of the tangent vectow is given by
notation in the form
_ _ W1 = (W V)E. (10
W=wW'MT, w=Mw, (6) _
The control procedure is the same as above. The parameter
where W' is a row vector and the matrik " is given by  u is changed tqu+sdu when condition(5) is satisfied. To
MT=VF. The equation for the norm & can be written as decide the sigrs we write Eq.(10) in matrix form as

||W][2=WT(MT+M)W. (7) Wi 1= MW, (1)

Thus the rate of change in the norm\&f due to change in  \yhereMT=Vf. The equation for the norm ok is
the parameter is given by
- - - W |[2P=WIMTMW, . (12
A= Wi+ ) |2 W] 2 Wl P AW
ZWT(M;-F M, )Wdu, (8)  Thus the rate of change in the norm\&f due to change in
the parameter is given by
where the last step is obtained by expanding to lowest order
in du and M,=dM/du. Clearly, for the local rate of
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r FIG. 2. A histogram of the distribution of the LLEs of the un-

controlled and controlled Lorenz systems for the parameter values
FIG. 1. The plot of the Lyapunov exponent of the Lorenz attrac-o=10.0,r=30.0,b=2.6666, y=0.5, anddr=1.0. The data has
tor for the parameters=10.0,b=2.6666, and from r=28.0to  been binned into ten boxes. The bar without lines shows the nor-
r=380.0. The lower curve and upper curves correspond to thenalized frequency of occurrence of the corresponding LLE of the
Lyapunov exponent for the uncontrolled and controlled systemsuncontrolled system and the bar with vertical lines shows the same
respectively withy=0.5 anddr=1.0. quantity for the controlled system.
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TABLE I. We list the uncontrolledfree) and controlledcont) values of the Lyapunov exponent and of
the fractal dimension&alculated by the box-counting algorithifior several dissipative maps and flows. The
values of the parameters of the systems analyzed are listed in the text. The column Fract. refers to the fraction
of time for which the system is controlled adg is the parameter change.

System vy du Fract. Lyapunov exp. Dimension
Free Cont. Free Cont.
Lorenz 0.5 dr=1.0 0.344 0.951 1.440 2.052 2.056
0.25 dr=1.0 0.447 0.951 1.362 2.052 2.061
Williamowski 1.0 dk;=1.5 0.047 0.559 0.804 2.069 2.068
-Rossler
Henon 0.5 da=0.1 0.263 0.306 0.328 1.206 1.212

A||Wt+1||2=||Wt+1(,u+d,u)||2—||Wt+1(,u)||2 (13) conditions in a small region of phase space. We cover the
attractor with a grid of cubic boxes. We take a large number
:WtT(MT'V'wL M;M)Wtd,u, (14) of initial conditions in a randomly chosen box. Each initial
condition evolves with a distinct trajectory and the control is
where the last step is obtained by expanding to lowest ordepperative for a given trajectorycorresponding to a given
in du andM ,=dM/du. For control to enhance chaos and initial condition) whenever the LLE of the trajectory satisfies
rate of mixing, the sigrs for the parameter changbx must ~ condition (5). The initial conditions are also evolved sepa-
be such that\||W,_4||? is positive. We shall illustrate our rately without the control. The initial conditions initially in
procedure for both flows and maps in the next section. one box spread over several boxes with time. A comparison
of the number of occupied boxes, i.e., the boxes which have

Il ILLUSTRATIONS at least one initial condition, as a function of time for the
uncontrolled and the controlled systems gives us an idea of
A. Flows the relative rates of mixing of the two systems. Figure 3 plots
We now illustrate our procedure using some typical flows the number of occupied boxes as a function of t'ime for.both
We first consider the Lorenz systeit2] given by the uncontrolled and the controlled systems with a grid of

10° boxes and 1®initial conditions.The parameter values
X=o(y—Xx), y=rx—y—-xz, z=xy—bz (15 arec=10.0,r=30.0,b=2.6666,dr=1.0, andy=0.25[13].
Itis clear from the figure that the controlled system mixes at
We chooser as the control parameter. The perturbation isa faster rate than the uncontrolled one. The results are un-
switched on when the conditiafd) is satisfied. The sign of changed for any randomly chosen initial box. This demon-
the perturbatiordr is obtained using Eq8) and the sign is strates that the control procedure has successfully enhanced
decided by W,W,dr>0. For a change of parameter the rate of mixing of the system.

dr=1.0, y=0.5, and with parameteks=10.0y=30.0, and We have also applied our algorithm to the Williamowski-
b=8/3. The Lyapunov exponent of the system is enhanced
from \=0.950 for the uncontrolled case to=1.440 (See 14000 ' . ; : '
Table ). uncontrofled —
This enhancement in the Lyapunov exponent is not con- | controlled ---- |

fined to the parameter values above. The plot of the
Lyapunov exponent of the system as a functiom &r both

the uncontrolled and the controlled case is shown in Fig. 1. 1t 10000
is clear from the figure that there is a substantial enhance-

ment of the Lyapunov exponent over the entire range plotted g 8000 |
in the figure. It can also be seen that the control mechanism 2
has succeeded in producing a positive Lyapunov exponent in 2 6000 -
a parameter regime where the uncontrolled system has a pe-=
riodic window. Thus the technique has been successful in 4000 -

both enhancing and maintaining chaos. This enhancement
has been effected by causing a change in the LLEs of the
system via parameter change. To show this, we plot the dis- 2090 [
tribution of the LLE forr=30.0 for both the uncontrolled

and the controlled cases in Fig. 2. It is clear that the distri- 0 . ' ' ' ’
. 0 5 10 15 20 25 30
bution of local Lyapunov exponents of the system has time
changed in a manner in which the average exponent is sig-
nificantly enhanced. FIG. 3. The plot of the number of occupied boxes as a function

In order to show that the increase in the Lyapunov expoof time for the uncontrolledsolid line) and controlleddashed ling
nent leads to an enhancement of the rate of mixing, we optorenz systems. The parameter values @re10.0, b=2.666 66,
erated the control procedure on a large number of initiak =30.0, y=0.25, anddr=1.0.
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FIG. 4. We show the spread of 10 000 points, initially in the same box ofxa684grid on the phase space of the standard rt@@and
(b) show the uncontrolled and controlled standard map after 10 iterategc)aauad (d) show similar graphs after 30 iterates. The parameter
values ar&K=1.5,dK=0.1, andy=0.25. The solid box seen in each figure is the set of initial conditions that are being iterated. The effect
of the control procedure on global mixing is demonstrateejrand (f) where uncontrolled and controlled points are, respectively, shown
after 200 iterates.

Rossler attractor, which models a system of chemical reacThe system is allowed to evolve at the parameter values
tions[14,15. The Williamowski-R@sler system evolves via k;=30.0,k,=1.0, k=10.0,k,=1.0, ks=16.5,k_,;=0.25,

the system of equations k_,=1.0x10"%, k_3=1.0x10 3=k_,, k_5=0.5. Control

is effected via a change in paramekgrwhenever the con-
dition (5) is satisfied. As seen from Table | this results in a
large enhancement of the Lyapunov exponent from the un-
controlled valuex =0.559 to the valuen=0.804 after the

2= —Kgxz+k_4+ksz—K_s5Z% (16)  application of the control. We have also verified that the rate

x=Kix—k_1x2—koxy+K_,y?>—kxz+K_y4,

y=Koxy—K_,y?—kay+k_s,
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of mixing is enhanced due to the control by evolving a large
number of initial conditions in a small region of phase space.

2500 T T T T T T T T T

B. Maps 2000

Consider the Heon map[16] given by

1500
Xer1=1—axt+Ye,  Yir1=bYiia. (17)

no. of hoxes

1000

If our control procedure is applied to the kten map at pa-
rameter valuea=1.2,b=0.3 withda=0.1 as the parameter
change, we again find an enhancement of the Lyapunov ex-
ponent from the uncontrolled value=0.306 to the con-
trolled valueA=0.328 (see Table ). Other values of the
parameters also give similar results. ol v
All our examples so far have dealt with dissipative flows. 0 20 40 60 80 t}r?g 120 140 160 180 200
However, our procedure is completely general and can be
applied to conservative systems as well, provided the change riG. 5. The plot of the number of occupied boxes as a function
in parameter is made in a way in which the conservativeyf time for the controlledsolid line) and uncontrolleddashed ling
nature of the flow is preserved. We demonstrate the increasgandard maps. The parameter values Krel.5, dK=0.2. The
in chaos and rate of mixing in the standard nja. curves are obtained after averaging over 25 different initial boxes.
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Xip1=Xi+ 2£sin(277yt), Vic1=VYi+X+1. (18  of Lyapunov exponents of the uncontrolled system is given
™ by (0.950, 0.000,—-14.617), and that of the controlled sys-
The increase in the rate of spread of initial conditions infem Is given by(l.440,—0.420,—14.68§). Thus the largest
phase space of the controlled standard map as compared ¥2Punov exponent of the system, which is a measure of the
the uncontrolled one is demonstrated in Fig. 4. The paramf@te of stretching, has increased whereas the other Lyapunov
eter values ar& =1.5, dK=0.2, y=0.25. It can be easily exponents of the system, have become more negative signi-

seen that the controlled map retains its area-preserving proﬂfying an increase in the rate of contraction. The controlled

erty. We iterate 10 000 initial conditions initially in a small System no longer has a zero Lyapunov exponent as the tra-
box. Figures &) and 4b) show the uncontrolled and con- jectory is no longer smooth. These observations are also true
trolled systems, respectively, after ten iterations. Figs) 4 of the other dissipative systems studied. The control proce-
and 4d) show the corresponding figures after 30 iterations. Itdure tends to push the trajectory in the basin of attraction of
is clear that the controlled system has spread out more thahe uncontrolled attractor, but the increased rate of contrac-
the uncontrolled situations. Thus the rate of mixing is en-tion pushes it back to the original attractor. Both these fac-

hanced. The Lyapunov exponent for the orbit with the initialtors work to our advantage. As mentioned earlier, the in-
condition x=0.2, y=0.3 increases fromr=0.286 to crease in the rate of stretching tends to mix the system better.

A=0.384. The invariant KAM tori in the phase space of the The increase in the rate of contraction has the advantage that
standard map function as barriers to global mixing. To sedl tends to stabilize the attractor. This works best for dissipa-
the effect of control on asymptotic global mixing we plot the tive systems and is the origin of the insignificant change in
uncontrolled and controlled system after 200 iterates in Figsthe fractal dimension of the controlled and uncontrolled at-
4(e) and 4f), respectively. We find that the attractor is very tractors in these cas¢see Table)l

similar in both the cases except that the controlled attractor The control procedure outlined above leads to the en-
spreads more. The area of empty regions in the uncontrolle@ancement of chaos and the rate of mixing for most param-
situation[Fig. 4(e)] is larger than the area of empty regions eter settings. However, we did find a few cases where it did
in the controlled situatiofFig. 4(f)]. We also plot the num- not work well, e.g., in the neighborhood of the parameter
ber of occupied boxes as a function of time for both thevaluesr=138.0 and =160.0 for the Lorenz attractor, where
controlled and uncontrolled standard maps in Fig. 5. It isthere is a wide periodic window nearby. In such cases the

clear that the number of occupied boxes grows much fastegontrol tends to push the trajectory in the neighborhood of a
for the controlled system. periodic orbit resulting in intermittent behavior and can even

lead to a decrease in the Lyapunov exponent. This problem
can be easily taken care of by changing the magnitude of the
parameter change and/or the facgor

As demonstrated above, our control procedure works for Yet another problem can arise in the case of conservative
all the maps and flows tested and the Lyapunov exponent isystems. As seen in the case of the standard map, our control
substantially enhanced in most cases. The Lyapunov experechanism improves the rate of mixing in the ergodic re-
nent referred to in the entire discussion above is the largegfions of the phase space, and the controlled system spreads
Lyapunov exponent of the system. It is also interesting tamore in phase space than the uncontrolled one. However,
look at the other Lyapunov exponents of the system. For théhere still remain barriers to global mixing in the form of
Lorenz attractor, for the parameter values=10.0, invariant KAM curves in the phase space. It may be possible
r=30.0,b=2.6666,dr=1.0, andy=0.5, the complete set to solve this problem in some cases by an appropriate choice

IV. DISCUSSION AND CONCLUSIONS
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of the factory and the magnitude of the parameter changerate of mixing for small changes in parameters. This mecha-
However, this may not always be possible. nism enhances the degree of chaoticity of the system and
Our control procedure works quite efficiently as it pro- hence can be useful in contexts other than the mixing context
duces a substantial enhancement of the Lyapunov exponeamphasized above. The success of the mechanism has been
for quite small changes in the parameters. This is due to thdemonstrated for several chaotic flows and maps. We hope
fact that our control procedure works by switching betweerthat this mechanism will prove to be useful in enhancing the
three types of chaotic flows, those characteristic of parametaate of mixing and also in other practical contexts.
valuesu, p+du and u—dgw. This switching introduces an
ext.rg time dependence in the problem and is the origin of the ACKNOWLEDGMENTS
efficiency of the procedure.
To summarize, we have introduced an efficient mecha- We thank the Department of Science and Technolbdgy
nism that produces a substantial increase in the chaos and tH&) for financial assistance.
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